Last Updated May 6th 2024

Introduction

The VibWire-301 is a general purpose, DIN rail mounted single channel vibrating wire sensor interface that can be used in a wide range of applications. The VW-301 can be directly connected to any third party data logger or acquisition system supporting SDI-12, RS-485 and MODBUS digital communications, as well as analogue measurement capabilities. The device also supports 4-20 mA current loop operations.

The VibWire-301 uses the Keynes Controls auto-resonance Sensor Excitation technique, therefore no prior knowledge of the sensor operating characteristics is required. The device can be directly connected into many third party SCADA systems using the 4-20 mA current loop and Modbus operations.

Easy Use

The VibWire-301 is the latest in a range of Keynes Control vibrating wire sensor interfaces. The device has been designed from the outset for accuracy of measurement, ease of use, flexible use of communication systems.

The Auto-resonance sensor excitation ensures that no prior vibrating wire sensor operating characteristics need be known in advance, and the minimum wear for sensors.

Network Interfaces

The VibWire-301 supports SDI-12, RS-485, MODBUS Digital Communications. Analogue output (0-2 V DC), and 4-20 mA current loop operations within the same unit. The 4-20mA current loop, and 0-2 V DC output is supplied for both the frequency and temperature sensor signals.

DIN Rail Installation

2

3

2

3.

 \circ

00

000

0

0

 \circ

000

0000

....

LED Status Indicato

RS232 Terminal Port

Speaker Switch Speaker

The VibWire-301 is installed into enclosures using industry standard DIN rail. A clip on the bottom of the unit secures the device to the rail. A DIN rail mounted device enables fast installation, and replacement as necessary.

35

Top Hat rail IEC/EN 60715

5 = High Speed RS485

1 = 4-20 mA

2 = 0-2 V DC

3 = SDI-12

4 = RS485

6 = MODBUS

1

4

PC Based Data Acquisition

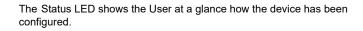
The VibWire-301 is fully integrated into the free Keynes Controls Q-LOG Data Acquisition and Display Software enabling the device to be used as a component part within a PC based Vibrating Wire sensor data acquisition system. The software can be used to configure, display and record measurements across a network.

VibWire-301 in a PC Data Acquisition System

Features

Communications: SDI12 / RS485 / 4-20 mA / 0-2V DC / Modbus Auto-resonance Sensor Excitation 400Hz to 15 KHz Range Full User Configured Outputs - Hz , Digits, SI Units Fully Integrated into the Q-LOG Data Acquisition Software Supports 2 and 4 Wire Sensors Analogue Output 0 to 2 V DC Frequency and Temperature Current Loop 4 to 20 mA Outputs - Isolated to 500V DC DIN Rail Mounted Device MODBUS over RS485

High Speed Measurements

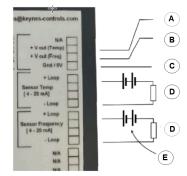

The VibWire-301 is capable of high speed sensor measurements. The basic model supports as standard 10 readings a second with the measurements stored directly into CSV file format.

Concurrent Measurements

The VibWire-301 is capable of simultaneous sampling operations for units on a network. The device supports the 'Concurrent' C! Command.

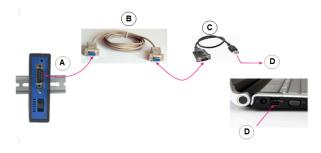
Q-LOG Windows PC Data Acquisition & Display Software

A complete version of Q-LOG without any restrictions can be download from http://keynes-controls.com/Download/QLogSetup50_21may2020.zip


ONTROLS

Single Channel Vibrating Wire Sensor Interface Last Updated May 6th 2024

Technical Specification


Physical Size	Height 120 mm - Width 100 mm - Depth 22 mm
Weight	125 g
Power Supply	8-15 V DC
Communication Ports	1 x RS-485 Slave - 9600 Baud, 8 data, 1 stop, no parity 1200 Baud, 7 data, 1 stop, even parity
	1 x SDI-12 - 1200 Baud, 7 data, 1 stop, even parity
External Power Supply	8 - 15V DC @ 22 mA
Vibrating Wire Measurements	
Sensor Excitation	Auto-resonance - Fully automatic frequency selection
Operating Frequency	400 - 15 KHz
Measurement Resolution	0.01 Hz RMS - 20 to 70 Deg C
Measurement Accuracy	± 0.014% of reading - 20 to 70 Deg C
SI Units	Hz, Digits (Hz²/1000), Eng Units (Quadratic Cal Factors)
Temperature Measurements	Thermistor Temperature Sensor
Analogue Input	24 Bit Sigma Delta
Analogue Output	0 - 2 V DC / 4-20 mA Temperature and Frequency
Current Loop Isolation	500V DC
Temperature Range	- 50 to 100 Deg C
Measurement Accuracy	± 0.25 % of reading - 20 to 70 Deg C
Output	Temperature - Deg C
	Frequency (Hz), Digits, SI Units
Temperature Sensor	Steinhart-Hart factors: A B C & D
	Beta Value - lower performance using Beta
Expansion Options	132 - 2 X Wire Frequency or Temperature,
1 x MUX-16/32 expansion unit	116 - 4 Wire vibrating wire sensor inputs
Scan Rate: Dynamic	10 - 20 Samples/ Sec (9600 B RS-485) - 10 Hz Analog Out
	2 Sec/Chan - using expansion module 250 ms update
16 x 4 Wire / 32 x 2 Wire	30 Sec. 1 minute.

Analogue Output Ports / 0-2 V DC / 4-20 mA Loop

A = 0-2 V DC (Temperature)		B = 0-2 V DC Frequency)
C = Gnd / 0V		D = Loop Sense Resistor
E = Loop Power Supply	Γ	

Terminal Port Communications Setup

Optional USB Media Converters

An optional media converter can be used to connect the VibWire-301 to a Windows PC using either the SDI-12 or 485 digital networks.

USB-485-Pro Isolated RS-485 Media Converter USB-SDI12-Pro Isolated SDI12 Media Converter

The vibrating wire sensor calibration factors can be assigned using the Q-LOG software in a Windows Environment.

Default Thermistor Settings

The factory set Steinhart-Hart Calibration Factors suitable for use with most vibrating wire sensors.

A	0.0033540	с	2.0829E-6
в	2.5627E-4	D	7.3003E-8

Connection to a Data Logger

The VibWire-301 connects to any third party data logger supporting SDI-12, 485 Communications or directly onto an analogue data acquisition.

Analogue Output Ports -- 0..2 V DC / 4..20 mA Loop

The analogue output ports, regardless of type, can be scaled to represent any measurement value in Hz, Digits and SI units for the frequency components, and Deg C for the temperature signal.

The device has isolated loops for both the frequency and temperature signals. The current loop opto-isolation prevents signal corruption due to ground loops.

The VibWire-301 can be fully configured using the Terminal Port Menu system built into the device and accessed using the RS-232 Port mounted on the front of the device.

No device drivers are required when configuring the device using the RS232 port

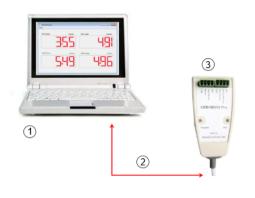
A = RS232 Terminal Port Connection **C** = RS232 to USB Converter

SDI-12 1200 = 1200 Baud, 7 , E, 1 Stop RS485 1200 = 1200 Baud, 7 , E, 1 Stop RS232 Terminal Port - 9600, 8, N,1,STOP **B** = Null Modem cable **D** = PCB USB Port

Specifications may be changed without notice

Last Updated May 6th 2024

Q-LOG Data Acquisition, Configuration and Display Software


Q-Log is the Keynes Controls Data Recording and Display software and has been designed solely for use with intelligent sensors and interfaces. The software operates as a stand-alone package and requires the use of an SDI-12, or RS-485 media converter. Q-LOG enables PC based systems to be created and tested. The software is free issued with the Keynes Controls instrumentation.

Common Keynes Controls	device identifier strings.	T (top teaster	
Product	ID string	QLog Vew life Hep ?	×
VibWire-201-Pro VibWire-101 VW sensor interface VibWire-108 VW sensor interface PIEZO-RM water level sensor Barom-SDI-12 barometer	3KEYNESVWRDOA001 13KEYNESCOVW101A011 13KEYNESCOVW108A016 13KEYNESCOPRESR001 13KEYNESCOPRAROMR003	Pontrell (particle) Pontrell Po	
IP-I AquaDAT sensor interface Single channel strain gage	13KEYNESCOIPINCL005 13KEYNESCOAQUDAT008 13KEYNESCOSTRAIN027		

Image opposite demonstrates how the VibWire-301 is identified in Q-LOG. All the devices that are detected on a network are shown here.

Windows PC based Data Acquisition Systems

The simplest Windows PC based vibrating wire sensor solution is shown below. A Windows PC running Q-LOG and an isolated USB media converter..

- 1. Windows PC running Q-LOG
- 2. USB Data Link
- 3. Optional Media Converter

Part Number: USB-SDI12-Pro (SDI12 Network) USB-485-Pro (RS485 Network)

The Keynes Controls media converters can power the VibWire-301 directly from a laptop / Desktop USB Port without the use of an external power supply.

Configuration

The measurements are recorded into unique time stamped text files that can be read by a spreadsheet. Information is easy to understand and process.

Q-LOG Network Configuration Window

YOUTUBE

Youtube: https://youtu.be/pxOO7UZbX5g

The Q-LOG software can be used to:

- 1. Display Results in Hz / Digits / Engineering Units
- 2. Real-time Charts.
- 3. User Defined Panel meters

1		
View Data		
Edit Links		
Number of panels +	1 (1x1)	Channel 1 mV
Colours +	2 (1x2)	
✓ Titles	3 (1x3)	
✓ Units	4 (2x2)	-0.1440
Save	6 (3x2)	
Channel 2 mV	6 (2x3)	Channel 3 mV
0.00	9 (3x3)	
1 0.04	8 (4x2)	2.0497
0.0	8 (2x4)	
Channel 4 mV	10 (5x2)	Channel 5 mV
	10 (2:5)	
169	12 (4x3)	1.5 140
ι	12 (3x4)	
	16 (4x4)	
Channel 6 mV		Channel 7 mV
0.00	10	D 10001
1171	5 15	0,4444

Q-LOG Panel Meter Selection Window

No programming experience is required. The sensor calibration factors can be written directly into the device. Their panel meters can be used to display sensor results.

Youtube Video Title: VW-301 Qlog Basic Operations

See: https://youtu.be/gWV1D8KPPfc

Data Acquisition and Testing

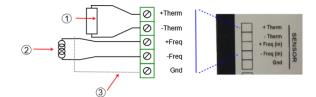
The Q-LOG software is an ideal tool for testing measurement systems in the workshop before installation on site, Sensors can be configured, test measurements made, results displayed for easy analysis.

Confidence can be made in the measurements before any installation onto data recorders or site wide monitoring systems.

Configuration Settings

- Enter Comm Port identified for USB media converter
 Data Recording Sample Rates
- . Data Recording Sample Rates - (1, 5, 10 Secs, 1 to 10 minutes, 1 and 6 Hours)
- 3. Time stamp Log Fllename
- 4. New Button
- Automatically create a new time stamped log file.
- 5. Network Type Selection SDI-12 / RS-485.

Last Updated May 6th 2024


SDI-12 / RS-485 Supported Commands

The following commands are supported by the VibWire-301 and are used by data loggers and data acquisition systems. The commands have been included to allow the VibWire-301 to operate easily with third party data loggers that support industry standard SDI-12 command set.

Start Measurement: M0! D0! - is the main command required to start a measurement and return the data to a logger unit or PC data acquisition system.

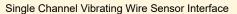
Description Maste	er	VibWire-301 Response
Acknowledge active a!		a/r/n
Send ID: al!		a13KEYNESVWRDOA001\r\n
provided to complement SDI-12 protocol		Part Description assigned by Keynes
Address Query ?!		a\r\n
identifies instrument address and commonly used on single		
instrument operations only. Used	to make command set SDI-12 compatible	Where a = ID number 0 - 9 (standard) / (az) Enhanced SDI-12 0 - 9 / a - z for RS485
Change Address: aAb!		b\r\n
used to change instrument address from a (initial) to b new		
	itial address b = new address	a : b = number 0 - 9 or a - z
Start Measurement aM!		a0261\r\n ****
	ddress of instrument ple 0M! starts scan for ID 0	instrument with address a returns 1 x 4 wire reading in 1 second.
Concurrent measurement:		a0268\r\n
Used for starting a measurement for all instruments on a aC!		
network at the same time. start r	measurement instrument address 'a'	initial response only after receipt of instruction and no response when data ready to be sent.
This command frees RS-485 bus for other devices		
	2 Wire Measurements	+xxxx.x+xxxx.x+xxxx.x+xxxx.x/r/n
	aD0! aD1! aD2! aD3! - 16 x Freq	
aM3!	aD0! aD1! aD2! aD3! - 16 x Freq	
aM2!	4 Wire Measurements aD0! aD1! aD2! aD3! aD4! aD5! aD6! aD7!	
	4 = Frequency D4-D7 = Temperature	
	lire-301 supports 2 thermistor types	Basister at 05 Day 0
· · · · · · · · · · · · · · · · · · ·	RE! T0! = 25	Resistance at 25 Deg C T0 - generally 25 Deg C
aX11		Beta Value
Parameters from the sensor calibration sheet		
Steinhart-Hart Parameters aXT1	ST0!	A in Steinhart-Hart
Thermistor resistance/temp calculation aXT1		B in Steinhart-Hart
aXT1: aXT1:		C in Steinhart-Hart D in Steinhart-Hart
Thermistor Type 2 aXT2		Resistance at 25 Deg C
	TO! = 25	T0 - generally 25 Deg C
aXT2		Beta Value
Parameters from the sensor calibration sheet		
Steinhart-Hart Parameters aXT2		A in Steinhart-Hart
Thermistor resistance/temp calculation aXT2: aXT2:		B in Steinhart-Hart C in Steinhart-Hart
ax12 aXT2		D in Steinhart-Hart
VW Sensor Input Channel Settings aXCH	10FN!	0 = output in Hz
		1 = output in digits = $F^2/1000$
	requency type	2 = use formula
N = V	/W Channel 0 7	A + B*digits + C*digits ² + D*temperature digits = Frequency ² in units of Hz ²
Thermistor Temperature Calculation aXT1	TYnl	0 = resistance ratio - thermistor data sheet (R_1/R_{25})
•	D n = integer 0	1 = Beta value calculation
	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	$1/T = 1/T_0 + \log(r)/Beta$ where $r = R_1/R_{25}$
		2 = Steinhart-Hart equation
		$1/T = A + B(Ln R_{t}/R_{25}) + C(Ln R_{t}/R_{25})^{2} + D(Ln R_{t}/R_{25})^{3}$

Sensor Connection

- 1. Thermistor Temperature Sensor.
- 2. Vibrating Wire Sensor.- 2 or 4 Wire.
- 3. Earth / Shield.

Calculations

The VibWire-301 can be configured to convert frequency into engineering units. The common calculation for vibrating wire sensors uses Digits. Keynes Controls defines the Digits calculation as:


Digits =	Frequency ²	<u>(Hz²)</u>	
	1000	1000	

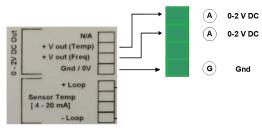
SI Units Calculation $X = A + Bd + Cd^2 - D(T)$

where **d** = measured frequency in Digits.

and **D** = Temperature Correction Coefficient

T = Temperature in Deg C

Last Updated May 6th 2024



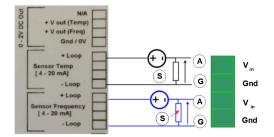
High Speed Measurements - 4-20 mA / 0 - 2 V DC

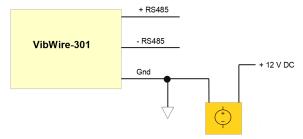
The VibWire-301 can operate in high speed mode. The simplest way to use the device in high speed mode is to connect it to an analogue data acquisition system via the 0-2 V DC or 4-20 mA loop output ports. The analogue output ports can also be used to drive process display units.

The device has two analogue output signals that can be individually configured to represent the sensor frequency in Hz, Digits or SI Units. The temperature sensor output can be scaled to represent Degree Celsius or mV. High speed vibrating wire measurements

Analogue Output Port Connection

A = Analogue Input 0-2 V DC (Frequency and Temperature signals) G = Gnd/ 0V

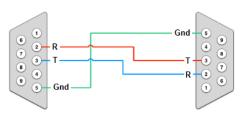

The menu system below are the default settings for a vibrating wire sensor operating over the range 500 - 1300 Hz as used by the Geokon 4200 sensor.


Sensor Setup

1 Frequency proc	Hz
2 Center Frequency (Hz)	900
3 First Ping (us)	5000
4 Cal A	0.
5 Cal B	1.0000
6 Cal C	0.
7 Cal D	0.
8 Stabalization after pluck (us)	5000
9 Sample number of pulses	20

The configuration settings show the output signal from the device will represent a Vibrating Wire signal in Hz.

Current Loop Port 4-20 mA



Power Supply

NULL Modem Cable - Pin-outs

A 9-Pin Null-Modem cable connects the 9-PiN D connector port on a USB to RS232 converter to the terminal port on the instrument.

where R = Receive T = Transmit Gnd = Ground.

The VibWire-301 supports two individually isolated 4-20 mA loop outputs that can be configured to represent the Frequency and temperature signal components of the sensor. The current loop not only represents the sensor signal but is also powered from it.

A precision 100 Ohm sense resistor is used to convert the loop signal to a voltage that can be measured by an analogue data acquisition system.

The sensor output signal can be configured to represent Hz, Digits or SI units.

Power Supply / Earth Connection

Connect the VibWire-301 to a power supply as shown in the figure opposite.

The 0V / Gnd connection of the DC power supply connects to the Gnd connection on the VibWire-301

Incorrect power supply connection can stop the VibWire-301 from operating correctly.

Last Updated May 6th 2024

MODBUS Registers

16 / 32 Bit - MODBUS Data Format

The MODBUS version of the instrument stores data into a series of 4 byte registers as shown below. Measurements are processed as a floating point 4 byte number. The data is in HEX format with the high word being the first 2 bytes and the last being in the next 2 bytes as shown.

The VibWire-301 supports both 16 and 32 bit format MODBUS registers.

MODBUS ID Number : Integer 1 .. 255

The MODBUS ID number is used to identify the instrument on a MODBUS network. This must be assigned for the instrument to communicate on a MODBUS network.

System Information

The last 2 registers in the VibWire-103 are used to check the data integrity. Register with address 32 increments upon the completion of an instrument scan and is used to show that the instrument is still operating.

Register with address 6/7 increments when the VibWire-301 receives a new MODBUS 'Read Input Registers' FC=04 command. .

	2 Bytes	2 Bytes
Floating Point Data Value	High Word	Low Word

32 Bit Floating Point Registers

The table below shows how the registers holding the VibWire-301 32 bit (floating point) data is stored.

32 Bit Floating Point Registers

Address Offset	Parameter	Description
0 1	Frequency Signal	High Order Word Low Order Word
2 3	Processed Value	High Order Word Low Order Word
4 5	Temperature	High Order Word Low Order Word
6 7	Number MODBUS read operations	High Order Word Low Order Word

32 Bit Signed Integer Registers

Address Offset	Parameter	Description
256 257	Frequency Signal	High Order Word Low Order Word
258 259	Processed Value	High Order Word Low Order Word
260 261	Temperature	High Order Word Low Order Word
262 263	Number MODBUS read operations	High Order Word Low Order Word

16 Bit Integer Registers

Address Offset	Parameter	Description
128	Frequency Signal	Integer
129	Processed Value	Integer
130	Temperature	Integer
131	Number MODBUS read operations	Integer

32 Bit Signed Integer x 10 Registers - High Resolution

Address Offset	Parameter	Description
384 385	Frequency Signal	High Order Word Low Order Word
386 387	Processed Value	High Order Word Low Order Word
388 389	Temperature	High Order Word Low Order Word
390 391	Number MODBUS read operations	High Order Word Low Order Word

Last Updated May 6th 2024

MODBUS over 485 Network

The images below show the Configuration Settings for the MODBUS POLL software that Keynes Controls uses to test the MODBUS version instruments.

Connection Setup	— ×
Connection Serial Port 🔹	ОК
Serial Settings	Cancel
CDM169 •	Mode
8 Data bits 💌	Response Timeout 1000 [ms]
Even Parity 1 Stop Bit Advanced	Delay Between Polls 20 [ms]
Remote Server IP Address Port Conno 127.0.0.1 ▼ 502 3000	ect Timeout [ms]

Read/Write I	Definition			X	
Slave ID:	1			ОК	
Function:	04 Read In	put Regis	ters (3x) 🔹	Cancel	
Address:	0	Protoco	I address. E.g	. 30011 -> 10	
Quantity:	40				
Scan Rate: Disable Read/	1000 Write Disable	[ms] ed			
	e on error			Bead/Write Once	
View Rows 10 20 50 100 Fit to Quantity 					
Display: Float AB	CD	•	Address	s Columns in Cell resses (Base 1)	

MODBUS Operations

The VibWire-301 will connect to any suitable MODBUS Master supporting RS-485 digital communications. This could be a plant wide SCADA solution or simply a stand-alone system running on a PC or laptop. So long as a suitable communications port is available then the instrument will communicate.

The Keynes Controls model USB-485 media converter can be used with MODBUS communications. Any other similar device can be used with the instruments.

Technical Specifications

Description		
1 x USB Type B	Γ	User assigned cable length
1 x Network Port		SDI12 or RS485 Port
1 x External Power Port		9.5 to 16 V DC - 1 Amp (Excludes USB-SDI12-Post model)
1 x Power Indicator LED		USB Supply Level exceeds 9.5 V DC / Short circuit detection
1 x Port Status Indicator		Used to show PC Port operating to specification and can power instruments
Direct Connection Power		Maximum current 150 mA without external source
External Power		1 x External supply 9.5 - 16 V DC
Short Circuit Protection	Γ	Automatic reset - network + 12 V DC to Gnd
Opto-isolation	Γ	1000 V DC SDI-12 Data to Gnd
Connector		2 x 4 way - 3.5 mm pitch screw lock.
Chip Set		FTDI - uses Windows 10 Microsoft Accredited Driver

1 = + RS486 2 = -RS485 3 = +12V DC 4 = Gnd / 0V

The VibWire-108-Modbus operates as a /slave system where the SCADA system or data recorder is the master.

Q-LOG MODBUS Settings

The Q-LOG software can be used to assign the MODBUS communications parameters and to switch the instrument into MODBUS Mode of operation. See image **"VibWire-301 QLOG Applications Software Configuration Window"** Page 8.

Communications Mode = 6 MODBUS Address = Integer 1-255

Last Updated May 6th 2024

VibWire-301 Port Pin-Outs

The image below shows the pin-outs for the Sensor and Communications Ports available on the VibWire-301 Vibrating Wire Sensor Interface.

Edit Sensor Configuration	ß		?
Property	Value	tool	Set
Identify	14KEYNESCOVW301A022		
Identify	14KEYNESCOVW301A022		
Communication mode	1	Tool	Set
RS485 baud rate	1200	Tool	Set
Modbus Address	1	Tool	Set
Frequency output	DIGITS	Tool	Set
Centre frequency	2000	Tool	Set
First Ping	5000	Tool	Set
Cal A	0.00000	Tool	Set
Cal B	1.0000	Tool	Set
Cal C	0.00000	Tool	Set
Cal D	0.00000	Tool	Set
Stabalization after pluck (us)	5000	Tool	Set
Sample number of pulses	50	Tool	Set
Therm 1 Type	2	Tool	Set
Therm 1 resistance at T0 (ohms)	3000.0	Tool	Set
Therm 1 T0 (Celcuis)	25.000	Tool	Set
Therm 1 Beta	0.00000	Tool	Set
Therm 1 Steinhart-Hart 0th order (A)	0.0033540	Tool	Set
Therm 1 Steinhart-Hart 1st order (B)	2.5627E-4	Tool	Set
Therm 1 Steinhart-Hart 2nd order (0)	2.0829E-6	Tool	Set
Therm 1 Steinhart-Hart 3rd order (C)	7.3003E-8	Tool	Set
Frequency 4-20mA : Value at 4mA	1440.0	Tool	Set
Frequency 4-20mA : Value at 20mA	16000	Tool	Set
Frequency 4-20mA : DAC for 4mA	10922	Tool	Set
Frequency 4-20mA : DAC for 20mA	54613	Tool	Set
Temperature 4-20mA : Value at 4mA	-40.000	Tool	Set
Temperature 4-20mA : Value at 20mA	120.00	Tool	Set
Temperature 4-20mA : DAC for 4mA	10922	Tool	Set
Temperature 4-20mA : DAC for 20mA	54613	Tool	Set
Frequency 0-2V : Value at 0V	0.00000	Tool	Set
Frequency 0-2V : Value at 2V	16000	Tool	Set
Frequency 0-2V : DAC for 0V	0	Tool	Set

VibWire-301 QLOG Applications Software Configuration Window

The QLOG Applications software which is supplied freely with this product can be used to configure the instrument, make test measurements and display results.

Ports

- Vibrating Wire Sensor Temperature Sensor 1 2 Vibrating Wire Sensor - Frequency Sensor Component 3 SDI12 Port 4 RS-485 Port 5 **Power Connection Port** 6 0 - 2 V DC - Temperature Signal Component Output 7 0 - 2 V DC - Frequency Signal Component Output 4-20 mA - Temperature Signal Component Loop Output 8
- 9 4-20 mA Frequency Signal Component Loop Output

Communication Port Settings

RS-232 Terminal Port	9600, 8, N, 1, STOP
RS-485 Network Port	1200, 7, E, 1, STOP
SDI12 Network Port	1200, 7, E, 1, STOP

Panel Meter Display - QLOG Vibrating Wire Sensor Results